Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
ObjectivesWith the increased use of 3D‐generated images in biological research, there is a critical need to adapt classical anatomical measurements, traditionally conducted with calipers, to a virtual environment. We present detailed protocols for measuring bicondylar length, a critical dimension of the femur, using three different imaging software programs—3D Slicer™, Amira™, and Simpleware™. These protocols provide researchers and practitioners in radiology, orthopedics, biomechanics, and biological anthropology with accurate and reproducible measurement techniques. The objective is to standardize and support virtual osteology in biomechanical research, stature estimation, and related medical and anthropological studies.Materials and MethodsAdhering to standardized protocols, we adapted femoral bicondylar length measurements for computed tomography images from a New Mexican collection (n = 10). The method was designed for applicability and reproducibility across three software platforms. By comparing measurements from the same sample across different observers and different platforms, this study validates the accuracy and consistency of the adapted protocol, demonstrating its utility for research and clinical assessments.ResultsWe present a step‐by‐step guide for each program, detailing bone alignment and measurement. We illustrate each step and provide video tutorials via links for an enhanced understanding of the process.DiscussionBicondylar length can be measured effectively in each software program following the provided instructions. However, ease of measurement varied among the programs, with some offering a more straightforward process. This variability underscores the importance of choosing appropriate software for the user's needs and proficiency. It also suggests areas for improvement and standardization in software design and instructional clarity.
ObjectivesWith the increased use of 3D‐generated images in biological research, there is a critical need to adapt classical anatomical measurements, traditionally conducted with calipers, to a virtual environment. We present detailed protocols for measuring bicondylar length, a critical dimension of the femur, using three different imaging software programs—3D Slicer™, Amira™, and Simpleware™. These protocols provide researchers and practitioners in radiology, orthopedics, biomechanics, and biological anthropology with accurate and reproducible measurement techniques. The objective is to standardize and support virtual osteology in biomechanical research, stature estimation, and related medical and anthropological studies.Materials and MethodsAdhering to standardized protocols, we adapted femoral bicondylar length measurements for computed tomography images from a New Mexican collection (n = 10). The method was designed for applicability and reproducibility across three software platforms. By comparing measurements from the same sample across different observers and different platforms, this study validates the accuracy and consistency of the adapted protocol, demonstrating its utility for research and clinical assessments.ResultsWe present a step‐by‐step guide for each program, detailing bone alignment and measurement. We illustrate each step and provide video tutorials via links for an enhanced understanding of the process.DiscussionBicondylar length can be measured effectively in each software program following the provided instructions. However, ease of measurement varied among the programs, with some offering a more straightforward process. This variability underscores the importance of choosing appropriate software for the user's needs and proficiency. It also suggests areas for improvement and standardization in software design and instructional clarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.