1989
DOI: 10.1016/0014-2921(89)90131-1
|View full text |Cite
|
Sign up to set email alerts
|

Introduction

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
18
0
2

Year Published

1992
1992
2022
2022

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 87 publications
(20 citation statements)
references
References 7 publications
0
18
0
2
Order By: Relevance
“…For this estimation, we use panel data with a probit random effects model. First, we select panel data due their benefits listed in the literature (Hsiao, 1985(Hsiao, , 1986Kelvmarken, 1989;Solon, 1989;Baltagi, 2002;p.5) as controlling for individual heterogeneity or allowing for identification and measurement of effects that are simply not detectable in pure cross-section on pure time-series data, among others. Second, we use a random effects probit model due to its advantages regarding a fixed-effect probit estimation (Hsiao, 2003;Badillo & Moreno, 2016) as overcoming the "incidental parameter problem," being appropriate to random samples from large populations or allowing for the treatment of omitted factors.…”
Section: Methodsmentioning
confidence: 99%
“…For this estimation, we use panel data with a probit random effects model. First, we select panel data due their benefits listed in the literature (Hsiao, 1985(Hsiao, , 1986Kelvmarken, 1989;Solon, 1989;Baltagi, 2002;p.5) as controlling for individual heterogeneity or allowing for identification and measurement of effects that are simply not detectable in pure cross-section on pure time-series data, among others. Second, we use a random effects probit model due to its advantages regarding a fixed-effect probit estimation (Hsiao, 2003;Badillo & Moreno, 2016) as overcoming the "incidental parameter problem," being appropriate to random samples from large populations or allowing for the treatment of omitted factors.…”
Section: Methodsmentioning
confidence: 99%
“…According to Hsiao (2003) and Klevmarken (1989), panel data allows to: (i) control the heterogeneity and differences between regions; (ii) process the information with much more variability, less multicollinearity between the explanatory variables, more degrees of freedom and efficiency; (iii) study the dynamic adjustment of the variables over time; (iv) build and test more sophisticated behavioral models than the sectional or pure temporal; and (v) reduce or eliminate the bias resulting from data aggregation.…”
Section: Methodological Frameworkmentioning
confidence: 99%
“…Nesse caso, a análi-se de dados em painel assegura, conforme Baltagi (2005), não só um maior controle, mas também a devida consistência dos parâmetros. Ademais, a regressão em painel demonstra com mais propriedade a dinâmica de ajustamento, mudanças e tendências no tempo, proporcionando resultados robustos (KLEVMARKEN, 1989). Em sínte-se, a regressão em painel oferece confiabilidade, sendo capaz de agregar um número maior de informações, o que não seria possível com a utilização, apenas, de séries temporais ou de cortes transversais puros (GUJARATI; PORTER, 2011).…”
Section: Especificações Do Modelo Analíticounclassified