Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Groundwater is a primary source of freshwater provisions all around the world. Due to its limited availability, water has become a precious entity nowadays. The future accessibility of groundwater is endangered due to its massive exploitation, particularly in the irrigation sector. Therefore, the current study was conducted to assess the declining groundwater levels in Rechna Doab, Punjab, Pakistan, where the aquifer has been reported to be highly stressed. A groundwater flow model was developed using the MODFLOW code of the USGS, and the steady-state model was calibrated for the year 2006, followed by a transient calibration for the years 2006–2010. Finally, the model was validated for 2011–2013, and a new scenario-based approach was used. Multiple future scenarios were developed to simulate the future response of the aquifer under changed recharge and pumping. The hydrodynamics of the groundwater flow was studied for two decades, i.e., up to 2033. The results under the business-as-usual scenario revealed a net gain in water levels in the upper parts of the study area. In contrast, a lowering of water levels was predicted in the central and lower parts. A maximum drop in the water level was anticipated to be 5.17 m, with a maximum gain of 5 m. For Scenario II, which followed the historical trend of pumping, an overall decline in water levels was observed, with a maximum expected drawdown of 15.68 m. However, the proposed water management Scenario III showed a general decrease in the upper study region, with the highest drop being 10.7 m, whereas an overall recovery of 6.87 m in the lower regions was observed. The simulations also suggested that the unconfined aquifer actively responded to the different scenario-based interventions. It was concluded that the region’s aquifer needs immediate action regarding pumping and recharge patterns to avoid a potential increase in pumping costs and to preserve the sustainability of endangered groundwater resources. Moreover, proper groundwater pumping and its policy legislation for its management should be implemented in order to protect this precious resource.
Groundwater is a primary source of freshwater provisions all around the world. Due to its limited availability, water has become a precious entity nowadays. The future accessibility of groundwater is endangered due to its massive exploitation, particularly in the irrigation sector. Therefore, the current study was conducted to assess the declining groundwater levels in Rechna Doab, Punjab, Pakistan, where the aquifer has been reported to be highly stressed. A groundwater flow model was developed using the MODFLOW code of the USGS, and the steady-state model was calibrated for the year 2006, followed by a transient calibration for the years 2006–2010. Finally, the model was validated for 2011–2013, and a new scenario-based approach was used. Multiple future scenarios were developed to simulate the future response of the aquifer under changed recharge and pumping. The hydrodynamics of the groundwater flow was studied for two decades, i.e., up to 2033. The results under the business-as-usual scenario revealed a net gain in water levels in the upper parts of the study area. In contrast, a lowering of water levels was predicted in the central and lower parts. A maximum drop in the water level was anticipated to be 5.17 m, with a maximum gain of 5 m. For Scenario II, which followed the historical trend of pumping, an overall decline in water levels was observed, with a maximum expected drawdown of 15.68 m. However, the proposed water management Scenario III showed a general decrease in the upper study region, with the highest drop being 10.7 m, whereas an overall recovery of 6.87 m in the lower regions was observed. The simulations also suggested that the unconfined aquifer actively responded to the different scenario-based interventions. It was concluded that the region’s aquifer needs immediate action regarding pumping and recharge patterns to avoid a potential increase in pumping costs and to preserve the sustainability of endangered groundwater resources. Moreover, proper groundwater pumping and its policy legislation for its management should be implemented in order to protect this precious resource.
In human societies, we observe a wide range of types of stratification, i.e., in terms of financial class, political power, level of education, sanctity, and military force. In financial, political, and social sciences, stratification is one of the most important issues and tools as the Lorenz Curve and the Gini Coefficient have been developed to describe some of its aspects. Stratification is greatly dependent on the access of people to wealth. By “wealth”, we mean the quantified prosperity which increases the life expectancy of people. Prosperity is also connected to the water-food-energy nexus which is necessary for human survival. Analyzing proxies of the water-food-energy nexus, we suggest that the best proxy for prosperity is energy, which is closely related to Gross Domestic Product (GDP) per capita and life expectancy. In order to describe the dynamics of social stratification, we formulate an entropic view of wealth in human societies. An entropic approach to income distribution, approximated as available energy in prehistoric societies, till present-day economies, shows that stratification can be viewed as a stochastic process subjected to the entropy maximization principle and occurring when limits to the wealth of society are set, either by the political and economic system and/or by the limits of available technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.