Predictions (DFT/B3LYP calculations) are that cyclopentadienyl lithium edge-fused to [n]circulenes in a circum-like manner should self-assemble as rod-like, nanometer long, supersandwich compounds (see figure). On the contrary, triazolyl lithium analogues prefer to dimerize thereby giving rise to shell-like dimers of variable curvatures.This study is aimed at exploring M. Etter's (T. W. Panunto, Z. Urbanczyk-Lipkowska, R. Jonhson, M. Etter, J. Am. Chem. Soc. 1987, 109, 7786-7797) bottom-up approach towards the design of organic-solid sate materials. Guided by the electrostatic paste ("gluing") effect of lithium, we examined the self-assembly modes of a series of cyclopentadienyl lithium edge-fused to benzene, as well as to [n]circulenes, arranged in a circum-like manner by means of DFT/B3 LYP calculations. We have also examined the self-assembly modes of the analogous triazolyl derivatives. Generally, well defined trends have been found. Thus, whereas cylcopentadienyl derivatives 1, 3 and 5 tend to aggregate as rod-like, nanometer-long, supersandwich compounds, the corresponding triazolyl analogues 2, 4 and 6 tend to dimerize thus giving rise to shell-like dimers of variable curvatures. In our view, M. Etter's bottom-up approach combined with high level calculations appears to have great potential for designing complex molecular architectures and nanostructures. Hopefully, these studies will spur the activity of synthetic and materials chemists.