Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Orthorhombic SnS is a promising thin-film solar-cell material composed of safe and abundant elements with suitable optical properties for photovoltaic application. For approximately two decades, SnS solar cells have employed heterojunction structures with p-type SnS and other n-type semiconductors because undoped SnS typically exhibits p-type electrical conduction. However, their conversion efficiency has remained stagnant at 4–5% for a long time. A breakthrough is required to significantly improve their conversion efficiencies before SnS solar cells can be put into practical use. Therefore, this comprehensive review article establishes the current state of the art in SnS solar cells, with an aim to accelerate both fundamental research and practical applications in this field. We discuss issues specific to SnS heterojunction solar cells, the advantages of the homojunction structure, and summarize recent advances in the n-type conversion of SnS by impurity doping, which is required to form a homojunction. The latter half of this article describes the latest research on the fabrication of n-type single crystals and films of halogen-doped n-type SnS, which is prepared via a doping system suitable for practical use. We conclude the article by summarizing the current status and future work on SnS homojunction devices, including the development of high-efficiency multi-junction SnS solar cells by band gap engineering.
Orthorhombic SnS is a promising thin-film solar-cell material composed of safe and abundant elements with suitable optical properties for photovoltaic application. For approximately two decades, SnS solar cells have employed heterojunction structures with p-type SnS and other n-type semiconductors because undoped SnS typically exhibits p-type electrical conduction. However, their conversion efficiency has remained stagnant at 4–5% for a long time. A breakthrough is required to significantly improve their conversion efficiencies before SnS solar cells can be put into practical use. Therefore, this comprehensive review article establishes the current state of the art in SnS solar cells, with an aim to accelerate both fundamental research and practical applications in this field. We discuss issues specific to SnS heterojunction solar cells, the advantages of the homojunction structure, and summarize recent advances in the n-type conversion of SnS by impurity doping, which is required to form a homojunction. The latter half of this article describes the latest research on the fabrication of n-type single crystals and films of halogen-doped n-type SnS, which is prepared via a doping system suitable for practical use. We conclude the article by summarizing the current status and future work on SnS homojunction devices, including the development of high-efficiency multi-junction SnS solar cells by band gap engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.