Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
<abstract><p>In this paper, a financial risk model, which is formulated from the risk management process of financial markets, is studied. By considering the presence of Gaussian white noise, the financial risk model is reformulated as a stochastic optimal control problem. On this basis, two efficient computational approaches for state estimation, which are the extended Kalman filter (EKF) and unscented Kalman filter (UKF) approaches, are applied. Later, based on the state estimate given by the EKF and UKF approaches, a linear feedback control policy is designed from the stationary condition. For illustration, some parameter values and the initial conditions of the financial risk model are used for the simulation of the stochastic optimal control problem. From the results, it is noticed that the UKF algorithm provides a better state estimate with a smaller value of the sum of squared errors (SSE) as compared to the SSE given by the EKF algorithm. Thus, the estimated output trajectory has a high accuracy that is close to the real output. Moreover, the control effort assists in estimating the state dynamics at the minimum cost. In conclusion, the efficiency of the computational approaches for optimal control of the financial risk model has been well presented.</p></abstract>
<abstract><p>In this paper, a financial risk model, which is formulated from the risk management process of financial markets, is studied. By considering the presence of Gaussian white noise, the financial risk model is reformulated as a stochastic optimal control problem. On this basis, two efficient computational approaches for state estimation, which are the extended Kalman filter (EKF) and unscented Kalman filter (UKF) approaches, are applied. Later, based on the state estimate given by the EKF and UKF approaches, a linear feedback control policy is designed from the stationary condition. For illustration, some parameter values and the initial conditions of the financial risk model are used for the simulation of the stochastic optimal control problem. From the results, it is noticed that the UKF algorithm provides a better state estimate with a smaller value of the sum of squared errors (SSE) as compared to the SSE given by the EKF algorithm. Thus, the estimated output trajectory has a high accuracy that is close to the real output. Moreover, the control effort assists in estimating the state dynamics at the minimum cost. In conclusion, the efficiency of the computational approaches for optimal control of the financial risk model has been well presented.</p></abstract>
This study aims to optimally control the level of a four-tank system at the steady state in the random disturbance environment using the stochastic approximation (SA) approach. Firstly, the stochastic optimal control problem of an equivalent discrete-time is introduced, where the voltages to the pumps are the control inputs. By minimizing the sum of squared errors, the liquid levels are estimated. Then, first-order necessary conditions are derived by defining the Hamiltonian function. Thus, the optimal voltages are calculated based on the estimated liquid levels to update the gradient of the cost function. Finally, for illustration, parameters in the system are considered and a simulation is conducted. The simulation results show that the state estimation and control law design can perform well, and the liquid levels are addressed along the steady state. In conclusion, the applicability of the SA approach for handling a four-tank system with random disturbances is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.