Die konzeptionelle und vorläufige Auslegung rotierender Maschinen wie Lüfter, Windturbinen, gegenläufiger offener Rotoren und Hubschrauberblätter erfordert kostengünstige und einfach zu bedienende Werkzeuge, die eine schnelle Geräuschbeurteilung und Optimierungsanalyse ermöglichen. Die neuesten numerischen und experimentellen Methoden sind für die Durchführung einer Optimierungsstudie zu rechenaufwändig, wohingegen kostengünstige Methoden, wie zum Beispiel analytische, bei realistischen Profilgeometrien vor allem im Bereich hoher Frequenzen sowie bei höheren Anstellwinkeln erhebliche Fehler aufweisen können. Da Turbulenz grundsätzlich eine statistische Größe ist, erscheint es sinnvoll, eine turbulente Strömung sowie auch die Interaktion eines Tragflügel-oder Schaufelprofils mit einer solchen Strömung statistisch zu modellieren. Die Bestimmung der instationären Reaktion des Strömungsprofils ist anschließend für die Vorhersage des entstehenden aerodynamischen Schalls von entscheidender Bedeutung. Das Hauptziel dieser Arbeit ist die Entwicklung einer neuen kostengünstigen und benutzerfreundlichen numerischen Technik für aeroakustische Konstruktionen, die sich hauptsächlich auf die Wechselwirkung zwischen Tragflügelprofilen und Turbulenzen konzentriert. Die Entwicklung der statistischen Methode gliedert sich in drei Abschnitte; nämlich-1) der Berechnung der Hintergrundströmung, 2) der Modellierung der statistisch optimierten turbulenten Zuströmung, und 3) der Generierung einer Wirbeldatenbank zur Vorhersage des entstehenden Schalls für mehrere Strömungsfelder, die durch unterschiedliche Werte von Turbulenzintensitäten und Längenskalen gekennzeichnet sind. Im Rahmen dieser Arbeit wird ein neuer Ansatz zur Modellierung einer turbulenten Zuströmung-und damit einer für die Lärmerzeugung wesentlichen Größe-vorgestellt, der eine vergleichsweise schnelle Berechnung erlaubt und nicht auf die Nutzung von Hochleistungscomputern angewiesen ist. Durch diesen Ansatz kann der Einfluss von Turbulenzparametern auf das in Turbomaschinen erzeugte Geräusch quantifiziert werden, wobei auch die geometrischen Parameter des Schaufelblatts bei der Geräuschvorhersage berücksichtigt werden. Die Hintergrundströmung wird bei dieser Methode numerisch simuliert, indem die Wirbeltransportgleichungen in der Lagrange-Form gelöst werden (sogenannte Vortex-Methoden). Der akustische Einfluss einer endlichen Anzahl von Wirbeln, charakterisiert durch alle möglichen Kombinationen von Wirbelgröße, Zirkulation und Injektionsposition /-zeit, definiert unter Verwendung der Bereiche von Wahrscheinlichkeitsverteilungsfunktionen, die von Injektionspunkten stromaufwärts des Schaufelblatts abgegeben werden, werden vorberechnet und in einer Matrix gespeichert. Diese Methode ist daher im Vergleich zu klassischen Vortex-Methoden vergleichsweise rechengünstig, da die Auswirkungen von Partikeln vorausberechnet, in einer Matrix gespeichert und schließlich zur Berechnung der Schallentstehung nur noch ausgelesen werden.