Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The occurrence of flight risks and accidents is closely related to pilot workload. Effective detection of pilot workload has been a key research area in the aviation industry. However, traditional methods for detecting pilot workload have several shortcomings: firstly, the collection of metrics via contact-based devices can interfere with pilots; secondly, real-time detection of pilot workload is challenging, making it difficult to capture sudden increases in workload; thirdly, the detection accuracy of these models is limited; fourthly, the models lack cross-pilot generalization. To address these challenges, this study proposes a large language model, WorkloadGPT, which utilizes low-interference indicators: eye movement and seat pressure. Specifically, features are extracted in 10 s time windows and input into WorkloadGPT for classification into low, medium, and high workload categories. Additionally, this article presents the design of an appropriate text template to serialize the tabular feature dataset into natural language, incorporating individual difference prompts during instance construction to enhance cross-pilot generalization. Finally, the LoRA algorithm was used to fine-tune the pre-trained large language model ChatGLM3-6B, resulting in WorkloadGPT. During the training process of WorkloadGPT, the GAN-Ensemble algorithm was employed to augment the experimental raw data, constructing a realistic and robust extended dataset for model training. The results show that WorkloadGPT achieved a classification accuracy of 87.3%, with a cross-pilot standard deviation of only 2.1% and a response time of just 1.76 s, overall outperforming existing studies in terms of accuracy, real-time performance, and cross-pilot generalization capability, thereby providing a solid foundation for enhancing flight safety.
The occurrence of flight risks and accidents is closely related to pilot workload. Effective detection of pilot workload has been a key research area in the aviation industry. However, traditional methods for detecting pilot workload have several shortcomings: firstly, the collection of metrics via contact-based devices can interfere with pilots; secondly, real-time detection of pilot workload is challenging, making it difficult to capture sudden increases in workload; thirdly, the detection accuracy of these models is limited; fourthly, the models lack cross-pilot generalization. To address these challenges, this study proposes a large language model, WorkloadGPT, which utilizes low-interference indicators: eye movement and seat pressure. Specifically, features are extracted in 10 s time windows and input into WorkloadGPT for classification into low, medium, and high workload categories. Additionally, this article presents the design of an appropriate text template to serialize the tabular feature dataset into natural language, incorporating individual difference prompts during instance construction to enhance cross-pilot generalization. Finally, the LoRA algorithm was used to fine-tune the pre-trained large language model ChatGLM3-6B, resulting in WorkloadGPT. During the training process of WorkloadGPT, the GAN-Ensemble algorithm was employed to augment the experimental raw data, constructing a realistic and robust extended dataset for model training. The results show that WorkloadGPT achieved a classification accuracy of 87.3%, with a cross-pilot standard deviation of only 2.1% and a response time of just 1.76 s, overall outperforming existing studies in terms of accuracy, real-time performance, and cross-pilot generalization capability, thereby providing a solid foundation for enhancing flight safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.