2024
DOI: 10.1587/transcom.2023ebi0002
|View full text |Cite
|
Sign up to set email alerts
|

Introduction to Compressed Sensing with Python

Masaaki NAGAHARA

Abstract: Compressed sensing is a rapidly growing research field in signal and image processing, machine learning, statistics, and systems control. In this survey paper, we provide a review of the theoretical foundations of compressed sensing and present state-of-the-art algorithms for solving the corresponding optimization problems. Additionally, we discuss several practical applications of compressed sensing, such as group testing, sparse system identification, and sparse feedback gain design, and demonstrate their ef… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 65 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?