1993
DOI: 10.1007/978-3-540-47575-0
|View full text |Cite
|
Sign up to set email alerts
|

Introduction to Conformal Invariance and Its Applications to Critical Phenomena

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

3
66
0
5

Year Published

1996
1996
2020
2020

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 78 publications
(74 citation statements)
references
References 246 publications
(468 reference statements)
3
66
0
5
Order By: Relevance
“…In this two-dimensional Fourier transform the only factors coupling the two integration variables are ͑z 1 2 z 2 ͒ 21 and ͑z 1 z 2 2 1͒ 21 coming from (12) or (13). This suggests the introduction of a "lattice second derivative"…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…In this two-dimensional Fourier transform the only factors coupling the two integration variables are ͑z 1 2 z 2 ͒ 21 and ͑z 1 z 2 2 1͒ 21 coming from (12) or (13). This suggests the introduction of a "lattice second derivative"…”
mentioning
confidence: 99%
“…1. Comparison of g lc ͑1, j͒ constructed from the conformal result (thick lines) with the exact critical correlation function g͑1, j͒ (points) obtained by numerical integration of (14) with (12) or (13) 2͒], and A ͑iii͒ `(the extreme anisotropic or Hamiltonian limit K 2 ø K 1 ).…”
mentioning
confidence: 99%
“…This situation is common, for example, in critical phenomena in statistical physics, in which it is called crossover. The theory of critical phenomena is actually a fruitful domain of application of the theory of scale invariance and furthermore of the full theory of conformal invariance [16]. The purpose of the present paper is to study the theory of the fractal structure of the universe with methods of statistical physics and field theory.…”
Section: Introductionmentioning
confidence: 99%
“…Um grande avanço que merece ser mencionado, mas que não será abordado nesta resenha,é a teoria de invariância conforme que permitiu um en-tendimento bem mais profundo de muitos modelos clássicos bidimensionais e modelos quânticos unidimensionais, veja, por exemplo, as refs. [22] e [23]. Outra omissão refere-seà teoria das transições de fase de primeira ordem.…”
Section: Capítulo 1 Introduçãounclassified
“…23) onde, k 1 +k 2 +k 3 = 0. Para calcular o diagrama basta conhecer o propagador livre, G(k), e as expressões entre colchetes que representam os diagramas de 3 pernas (triângulo), e o de 2 pernas (oval), sem os propagadores G(k) nas linhas externas.…”
unclassified