Abstract. In this paper, we prove that the numerical solution of the mono-directional neutron transport equation by the Petrov-Galerkin method converges to the true solution in the L 2 norm at the rate of h 2 . Since consistency has been shown elsewhere, the focus here is on stability. We prove that the system of Petrov-Galerkin equations is stable by showing that the 2-norm of the inverse of the matrix for the system of equations is bounded by a number that is independent of the order of the matrix. This bound is equal to the length of the longest path that it takes a neutron to cross the domain in a straight line. A consequence of this bound is that the global error of the Petrov-Galerkin approximation is of the same order of h as the local truncation error. We use this result to explain the widely held observation that the solution of the Petrov-Galerkin method is second accurate for one class of problems, but is only first order accurate for another class of problems.