Two types of dimeric complexes [Ln2(hfa)6(mu2-O(CH2)2NHMe2)2] and [Ln(thd)2(mu2,eta2-O(CH2)2NMe2)]2 (Ln = YIII, EuIII, GdIII, TbIII, TmIII, LuIII; hfa- = hexafluoroacetylacetonato, thd- = dipivaloylmethanato) are obtained by reacting [Ln(hfa)3(H2O)2] and [Ln(thd)3], respectively, with N,N-dimethylaminoethanol in toluene and are fully characterized. X-ray single crystal analysis performed for the TbIII compounds confirms their dimeric structure. The coordination mode of N,N-dimethylaminoethanol depends on the nature of the beta-diketonate. In [Tb2(hfa)6(mu2-O(CH2)2NHMe2)2], eight-coordinate TbIII ions adopt distorted square antiprismatic coordination environments and are O-bridged by two zwitterionic N,N-dimethylaminoethanol ligands with a Tb1...Tb2 separation of 3.684(1) A. In [Tb(thd)2(mu2,eta2-O(CH2)2NMe2)]2, the N,N-dimethylaminoethanol acts as chelating-bridging O,N-donor anion and the TbIII ions are seven-coordinate; the Tb1...Tb1A separation amounts to 3.735(2) A within centrosymmetric dimers. The dimeric complexes are thermally stable up to 180 degrees C, as shown by thermogravimetric analysis, and their volatility is sufficient for quantitative sublimation under reduced pressure. The EuIII and TbIII dimers display metal-centered luminescence, particularly [Eu2(hfa)6(O(CH2)2NHMe2)2] (quantum yield Q(L)Ln = 58%) and [Tb(thd)2(O(CH2)2NMe2)]2 (32%). Consideration of energy migration paths within the dimers, based on the study of both pure and EuIII- or TbIII-doped (0.01-0.1 mol %) LuIII analogues, leads to the conclusion that both the beta-diketone and N,N-dimethylaminoethanol ligands contribute significantly to the sensitization process of the EuIII luminescence. The ancillary ligand increases considerably the luminescence of [Eu2(hfa)6(O(CH2)2NHMe2)2], compared to [Ln(hfa)3(H2O)2], through the formation of intra-ligand states while it is detrimental to TbIII luminescence in both beta-diketonates. Thin films of the most luminescent compound [Eu2(hfa)6(O(CH2)2NHMe2)2] obtained by vacuum sublimation display photophysical properties analogous to those of the solid-state sample, thus opening perspectives for applications in electroluminescent devices.