Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Green energy storage systems play a vital role in enabling a sustainable future by facilitating the efficient integration and utilization of renewable energy sources. The main problems related to two‐dimensional (2D) materials are their difficult synthesis process, high cost, and bulk production, which hamper their performance. In recent years, MXenes have emerged as highly promising materials for enhancing the performance of energy storage devices due to their unique properties, including their high surface area, excellent electrical and thermal conductivity, and exceptional chemical stability. This paper presents a comprehensive scientific approach that explores the potential of MXenes for empowering green energy storage systems. Which indicates the novelty of the article. The paper reviews the latest advances in MXene synthesis techniques. Furthermore, investigates the application of MXenes in various energy storage technologies, such as lithium‐ion batteries, supercapacitors, and emerging energy storage devices. The utilization of MXenes as electrodes in flexible and transparent energy storage devices is also discussed. Moreover, the paper highlights the potential of MXenes in addressing key challenges in energy storage, including enhancing energy storage capacity, improving cycling stability, and promoting fast charging and discharging rates. Additionally, industrial application and cost estimation of MXenes are explored. As the output of the work, we analyzed that HF and modified acid (LiF and HCl) are the established methods for synthesis. Due to high electrical conductivity, MXene materials are showing extraordinary results in energy storage and related applications. Making a composite hydrothermal method is one of the established methods. This scientific paper underscores the significant contributions of MXenes in advancing green energy storage systems, paving the way for a sustainable future driven by renewable energy sources. To facilitate the research, this article includes technical challenges and future recommendations for further research gaps in the topic.
Green energy storage systems play a vital role in enabling a sustainable future by facilitating the efficient integration and utilization of renewable energy sources. The main problems related to two‐dimensional (2D) materials are their difficult synthesis process, high cost, and bulk production, which hamper their performance. In recent years, MXenes have emerged as highly promising materials for enhancing the performance of energy storage devices due to their unique properties, including their high surface area, excellent electrical and thermal conductivity, and exceptional chemical stability. This paper presents a comprehensive scientific approach that explores the potential of MXenes for empowering green energy storage systems. Which indicates the novelty of the article. The paper reviews the latest advances in MXene synthesis techniques. Furthermore, investigates the application of MXenes in various energy storage technologies, such as lithium‐ion batteries, supercapacitors, and emerging energy storage devices. The utilization of MXenes as electrodes in flexible and transparent energy storage devices is also discussed. Moreover, the paper highlights the potential of MXenes in addressing key challenges in energy storage, including enhancing energy storage capacity, improving cycling stability, and promoting fast charging and discharging rates. Additionally, industrial application and cost estimation of MXenes are explored. As the output of the work, we analyzed that HF and modified acid (LiF and HCl) are the established methods for synthesis. Due to high electrical conductivity, MXene materials are showing extraordinary results in energy storage and related applications. Making a composite hydrothermal method is one of the established methods. This scientific paper underscores the significant contributions of MXenes in advancing green energy storage systems, paving the way for a sustainable future driven by renewable energy sources. To facilitate the research, this article includes technical challenges and future recommendations for further research gaps in the topic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.