The progress in radar cross section measurements is strongly related to the progress in radar technology. The recent acceleration in radar technology and processing techniques has generated a corresponding acceleration in interest for radar cross section measurements. Historically, early radar cross section measurements were performed to determine the detection range of radar systems, a fundamental objective that still exists. Later measurements, coupled with analytic techniques and computer codes, were performed to extend our understanding of the radar scattering process. At the present time, the availability of broad-band electronics, signal processing techniques, and digital technology results in radar cross section measurement programs which are directed toward exploring the performance of operational waveforms and processing, target discrimination, target detectability in clutter, and radar scattering control.The fundamentals of radar cross section measurements are reviewed. Measurement facilities, including the present research activities on compact range techniques, are then described. Instrumentation radars have benefited from both wide-bandwidth electronics and digital processing capabilities; Fourier transform techniques, in particular, provide both additional information on target scattering, and increase measurement accuracy by isolating the target from radar returns from the measurement facility. The frequency coverage has also extended to include millimeter-wave frequencies. Achievable accuracy is important in any measurement program, and those factors that limit the accuracy of radar cross section measurements are discussed.