Application of lineament analysis in structural geology gained renewed interest when remote sensing data and technology became available through dedicated Earth observation satellites like Landsat in 1972. Lineament data have since been widely used in general structural investigations and resource and geohazard studies. The present contribution argues that lineament analysis remains a useful tool in structural geology research both at the regional and local scales. However, the traditional “lineament study” is only one of several methods. It is argued here that structural and lineament remote sensing studies can be separated into four distinct strategies or approaches. The general analyzing approach includes general structural analysis and identification of foliation patterns and composite structural units (mega-units). The general approach is routinely used by most geologists in preparation for field work, and it is argued that at least parts of this should be performed manually by staff who will participate in the field activity. We argue that this approach should be a cyclic process so that the lineament database is continuously revised by the integration of data acquired by field data and supplementary data sets, like geophysical geochronological data. To ensure that general geological (field) knowledge is not neglected, it is our experience that at least a part of this type of analysis should be performed manually. The statistical approach conforms with what most geologists would regard as “lineament analysis” and is based on statistical scrutiny of the available lineament data with the aim of identifying zones of an enhanced (or subdued) lineament density. It would commonly predict the general geometric characteristics and classification of individual lineaments or groups of lineaments. Due to efficiency, capacity, consistency of interpretation methods, interpretation and statistical handling, this interpretative approach may most conveniently be performed through the use of automatized methods, namely by applying algorithms for pattern recognition and machine learning. The focused and dynamic approaches focus on specified lineaments or faults and commonly include a full structural geological analysis and data acquired from field work. It is emphasized that geophysical (potential field) data should be utilized in lineament analysis wherever available in all approaches. Furthermore, great care should be taken in the construction of the database, which should be tailored for this kind of study. The database should have a 3D or even 4D capacity and be object-oriented and designed to absorb different (and even unforeseen) data types on all scales. It should also be designed to interface with shifting modeling tools and other databases. Studies of the Norwegian mainland have utilized most of these strategies in lineament studies on different scales. It is concluded that lineament studies have revealed fracture and fault systems and the geometric relations between them, which would have remained unknown without application of remote sensing data and lineament analysis.