The main objective of this work was to fabricate smart nanocomposite transparent conductive biophysiological electrodes based on modified graphene oxide (GO). The GO is abundant, flexible conductors that can be formulated as a transparent sheet and thereby alleviate the drawbacks of using indium tin oxide in transparent electrodes, like its scarcity, brittleness, and cost. GO was synthesized by a modified version of Hummers’ method under highly acidic conditions with sulfuric acid and showed good distribution at a high temperature of 90 °C. Polyvinyl alcohol (PVA) was used as a polymer host in the composite. Glycerol (Gl) was used to increase the flexibility and conductivity through an esterification reaction. Characteristic techniques were used to detect the morphology and structure of GO fillers and their polymer composites, such as transmission electron microscopy, x-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The GO/Gl/PVA transparent nanocomposite was tested for the synthesis of electrocardiogram (ECG) and electrodermal (EDA) electrodes. The Biopac device was used to evaluate the behavior of the GO/Gl/PVA plastic transparent electrode in comparison to the GO/Gl/PVA black electrode and a commercial one. The results indicated improved efficiency of the GO/Gl/PVA ECG transparent electrode. The GO/Gl/PVA EDA electrode produced signals with higher conductivity and lower noise than the commercial electrode.