Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract. Wildfires change the hydrologic and geomorphic response of watersheds, which has been associated with cascades of additional hazards and management challenges. Among these post-wildfire events are shallow landslides and debris flows. This study evaluates post-wildfire mass movement trigger characteristics by comparing the precipitation preceding events at both burned and unburned locations. Landslide events are selected from the NASA Global Landslide Catalog (GLC). Since this catalog contains events from multiple regions worldwide, it allows a greater degree of inter-region comparison than many more localized catalogs. Fire and precipitation histories for each site are established using Moderate Resolution Imagine Spectroradiometer (MODIS) Burned Area and Climate Hazards group InfraRed Precipitation with Station data (CHIRPS) precipitation data, respectively. Analysis of normalized 7 d accumulated precipitation for sites across all regions shows that, globally, mass movements at burned sites are preceded by less precipitation than mass movements without antecedent burn events. This supports the hypothesis that fire increases rainfall-driven mass movement hazards. An analysis of the seasonality of mass movements at burned and unburned locations shows that mass-movement-triggering storms in burned locations tend to exhibit different seasonality from rainfall-triggered mass movements in areas undisturbed by recent fire, with a variety of seasonal shifts ranging from approximately 6 months in the Pacific Northwest of North America to 1 week in the Himalayan region. Overall, this paper offers an exploration of regional differences in the characteristics of rainfall-triggered mass movements at burned and unburned sites over a broad spatial scale and encompassing a variety of climates and geographies.
Abstract. Wildfires change the hydrologic and geomorphic response of watersheds, which has been associated with cascades of additional hazards and management challenges. Among these post-wildfire events are shallow landslides and debris flows. This study evaluates post-wildfire mass movement trigger characteristics by comparing the precipitation preceding events at both burned and unburned locations. Landslide events are selected from the NASA Global Landslide Catalog (GLC). Since this catalog contains events from multiple regions worldwide, it allows a greater degree of inter-region comparison than many more localized catalogs. Fire and precipitation histories for each site are established using Moderate Resolution Imagine Spectroradiometer (MODIS) Burned Area and Climate Hazards group InfraRed Precipitation with Station data (CHIRPS) precipitation data, respectively. Analysis of normalized 7 d accumulated precipitation for sites across all regions shows that, globally, mass movements at burned sites are preceded by less precipitation than mass movements without antecedent burn events. This supports the hypothesis that fire increases rainfall-driven mass movement hazards. An analysis of the seasonality of mass movements at burned and unburned locations shows that mass-movement-triggering storms in burned locations tend to exhibit different seasonality from rainfall-triggered mass movements in areas undisturbed by recent fire, with a variety of seasonal shifts ranging from approximately 6 months in the Pacific Northwest of North America to 1 week in the Himalayan region. Overall, this paper offers an exploration of regional differences in the characteristics of rainfall-triggered mass movements at burned and unburned sites over a broad spatial scale and encompassing a variety of climates and geographies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.