One of the most popular approaches being pursued to achieve a quantum advantage with practical hardware are superconducting circuit devices. Although significant progress has been made over the previous two decades, substantial engineering efforts are required to scale these devices so they can be used to solve many problems of interest. Unfortunately, much of this exciting field is described using technical jargon and concepts from physics that are unfamiliar to a classically trained electromagnetic engineer. As a result, this work is often difficult for engineers to become engaged in. We hope to lower the barrier to this field by providing an accessible review of one of the most prevalently used quantum bits (qubits) in superconducting circuit systems, the transmon qubit. Most of the physics of these systems can be understood intuitively with only some background in quantum mechanics. As a result, we avoid invoking quantum mechanical concepts except where it is necessary to ease the transition between details in this work and those that would be encountered in the literature. We believe this leads to a gentler introduction to this fascinating field, and hope that more researchers from the classical electromagnetic community become engaged in this area in the future.