2015
DOI: 10.1186/s40537-015-0013-4
|View full text |Cite
|
Sign up to set email alerts
|

Intrusion detection and Big Heterogeneous Data: a Survey

Abstract: Intrusion Detection has been heavily studied in both industry and academia, but cybersecurity analysts still desire much more alert accuracy and overall threat analysis in order to secure their systems within cyberspace. Improvements to Intrusion Detection could be achieved by embracing a more comprehensive approach in monitoring security events from many different heterogeneous sources. Correlating security events from heterogeneous sources can grant a more holistic view and greater situational awareness of c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
111
0
7

Year Published

2017
2017
2020
2020

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 246 publications
(118 citation statements)
references
References 48 publications
0
111
0
7
Order By: Relevance
“…Anomaly detection evaluates monitoring data against normal baseline and will issue an alert if there is an occurrence of the abnormal behaviour. Challenges in IDS are the big heterogeneous data which need to be processed in real-time (Zuech et al 2015). Zuech et al (2015) stated that correlating security events from various heterogeneous sources such as network and server could enhance the cyber threat analysis and cyber intelligence.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Anomaly detection evaluates monitoring data against normal baseline and will issue an alert if there is an occurrence of the abnormal behaviour. Challenges in IDS are the big heterogeneous data which need to be processed in real-time (Zuech et al 2015). Zuech et al (2015) stated that correlating security events from various heterogeneous sources such as network and server could enhance the cyber threat analysis and cyber intelligence.…”
Section: Introductionmentioning
confidence: 99%
“…Challenges in IDS are the big heterogeneous data which need to be processed in real-time (Zuech et al 2015). Zuech et al (2015) stated that correlating security events from various heterogeneous sources such as network and server could enhance the cyber threat analysis and cyber intelligence. Machine learning can be used to learn the nature of the normal traffic behaviour autonomously, which can adapt normal structure and recognise suspicious or anomalous events (Palmieri et al 2014).…”
Section: Introductionmentioning
confidence: 99%
“…Bu problem özünü Big data kontekstində daha qabarıq göstərir. Anomaliyaların aşkarlanmasındakı ənənəvi metodlar böyük həcm, müxtəliflik, yüksək sürət kimi kimi xüsusiyyətlərlə təyin olunan böyük verilənlərdə yaxşı nəticə göstərmirlər [4][5][6][7].…”
Section: Introductionunclassified
“…Bu problem özünü Big data kontekstində daha qabarıq göstərir. Anomaliyaların aşkarlanmasındakı ənənəvi metodlar böyük həcm, müxtəliflik, yüksək sürət kimi kimi xüsusiyyətlərlə təyin olunan böyük verilənlərdə yaxşı nəticə göstərmirlər [4][5][6][7].Anomaliyaların düzgün aşkarlanmaması və ya emalı əldə olunan biliyin etibarlılığına birbaşa təsir göstərir. Ona görə də anomalyaların düzgün identifikasiyası vacib məsələdir, həm də sadə məsələ deyildir.…”
unclassified
See 1 more Smart Citation