2005
DOI: 10.1007/11589990_131
|View full text |Cite
|
Sign up to set email alerts
|

Intrusion Detection Using Text Mining in a Web-Based Telemedicine System

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2009
2009
2019
2019

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 5 publications
0
1
0
Order By: Relevance
“…In recent years, the development of information systems in the field of business, academics and medicinehasledtoanincreaseintheamountofstoreddatayearbyyear.Avastmajorityofbusiness dataarestoredindocumentsthatarevirtuallyunstructured.Thisiswherethetextminingfitsinto thepicture.Textminingtechnologyisveryhelpfulforpeopletoprocesshugeinformation (Adeva, 2005).Textmininginvolvesimposingstructureupontextsothatrelevantinformationcanbeextracted fromit (Miller,2005).Forexample,inthefieldofacademics,manyscholasticconferencestake placeeveryyear.Toextendtheknowledgeofinterestofthecurrentfocusofaconference,organizers oftendesiretoofferadditionalworkshops.Inmanycases,theseadditionaleventsareintendedto introducetheparticipantsoftheprogramtosignificantstreamsofresearchinrelatedfieldsofstudy andtrytoidentifytheemergenttechnologiesintermsofresearchinterestsandfocus.Identification ofreasonablecandidatetechnologiesforsuchworkshopsisoftensubjectiveratherthanobjectively derivingfromtheexistingandemergingresearch (Romero,2007).Anemergenttrendisatopicarea thatisgrowingininterestandutilityovertime.Thedetectionofnewphrasesandemergingtechnical termshasbecomeveryimportant (Abe,2009andAmarasirietal.,2005. Clusteringbydocumentconceptsisapowerfulwayofretrievinginformationfromalargenumber ofdocuments (Amarasiri,2005).Thistaskingeneraldoesnotmakeanyassumptiononthedata distribution.PopularautomaticpatternclusteringmethodssuchasK-meansclustering (Bekkerman, 2001)andMinimalspanningtrees (SolkaJeffery,2005)areavailableforenablingtextcategorization process.…”
Section: Introductionmentioning
confidence: 99%
“…In recent years, the development of information systems in the field of business, academics and medicinehasledtoanincreaseintheamountofstoreddatayearbyyear.Avastmajorityofbusiness dataarestoredindocumentsthatarevirtuallyunstructured.Thisiswherethetextminingfitsinto thepicture.Textminingtechnologyisveryhelpfulforpeopletoprocesshugeinformation (Adeva, 2005).Textmininginvolvesimposingstructureupontextsothatrelevantinformationcanbeextracted fromit (Miller,2005).Forexample,inthefieldofacademics,manyscholasticconferencestake placeeveryyear.Toextendtheknowledgeofinterestofthecurrentfocusofaconference,organizers oftendesiretoofferadditionalworkshops.Inmanycases,theseadditionaleventsareintendedto introducetheparticipantsoftheprogramtosignificantstreamsofresearchinrelatedfieldsofstudy andtrytoidentifytheemergenttechnologiesintermsofresearchinterestsandfocus.Identification ofreasonablecandidatetechnologiesforsuchworkshopsisoftensubjectiveratherthanobjectively derivingfromtheexistingandemergingresearch (Romero,2007).Anemergenttrendisatopicarea thatisgrowingininterestandutilityovertime.Thedetectionofnewphrasesandemergingtechnical termshasbecomeveryimportant (Abe,2009andAmarasirietal.,2005. Clusteringbydocumentconceptsisapowerfulwayofretrievinginformationfromalargenumber ofdocuments (Amarasiri,2005).Thistaskingeneraldoesnotmakeanyassumptiononthedata distribution.PopularautomaticpatternclusteringmethodssuchasK-meansclustering (Bekkerman, 2001)andMinimalspanningtrees (SolkaJeffery,2005)areavailableforenablingtextcategorization process.…”
Section: Introductionmentioning
confidence: 99%