“…In recent years, the development of information systems in the field of business, academics and medicinehasledtoanincreaseintheamountofstoreddatayearbyyear.Avastmajorityofbusiness dataarestoredindocumentsthatarevirtuallyunstructured.Thisiswherethetextminingfitsinto thepicture.Textminingtechnologyisveryhelpfulforpeopletoprocesshugeinformation (Adeva, 2005).Textmininginvolvesimposingstructureupontextsothatrelevantinformationcanbeextracted fromit (Miller,2005).Forexample,inthefieldofacademics,manyscholasticconferencestake placeeveryyear.Toextendtheknowledgeofinterestofthecurrentfocusofaconference,organizers oftendesiretoofferadditionalworkshops.Inmanycases,theseadditionaleventsareintendedto introducetheparticipantsoftheprogramtosignificantstreamsofresearchinrelatedfieldsofstudy andtrytoidentifytheemergenttechnologiesintermsofresearchinterestsandfocus.Identification ofreasonablecandidatetechnologiesforsuchworkshopsisoftensubjectiveratherthanobjectively derivingfromtheexistingandemergingresearch (Romero,2007).Anemergenttrendisatopicarea thatisgrowingininterestandutilityovertime.Thedetectionofnewphrasesandemergingtechnical termshasbecomeveryimportant (Abe,2009andAmarasirietal.,2005. Clusteringbydocumentconceptsisapowerfulwayofretrievinginformationfromalargenumber ofdocuments (Amarasiri,2005).Thistaskingeneraldoesnotmakeanyassumptiononthedata distribution.PopularautomaticpatternclusteringmethodssuchasK-meansclustering (Bekkerman, 2001)andMinimalspanningtrees (SolkaJeffery,2005)areavailableforenablingtextcategorization process.…”