In recent years, the key principles behind Separation Logic have been generalized to generate formalisms for a number of verification tasks in program analysis via the formulation of 'non-standard' models utilizing notions of separation distinct from heap disjointness. These models can typically be characterized by a separation theory, a collection of first-order axioms in the signature of the model's underlying ordered monoid. While all separation theories are interpreted by models that instantiate a common mathematical structure, many are undefinable in Separation Logic and determine different classes of valid formulae, leading to incompleteness for existing proof systems. Generalizing systems utilized in the proof theory of bunched logics, we propose a framework of tableaux calculi that are generically extendable by rules that correspond to separation theories axiomatized by coherent formulas. This class covers all separation theories in the literature-for both classical and intuitionistic Separation Logic-as well as axioms for a number of related formalisms appropriate for reasoning about complex systems, security, and concurrency. Parametric soundness and completeness of the framework is proved by a novel representation of tableaux systems as coherent theories, suggesting a strategy for implementation and a tentative first step towards a new logical framework for non-classical logics.