An investigation of the Y 2 Fe 17 compound belonging to the class of intermetallic alloys of rareearth and 3d-transition metals is presented. The magnetization, magnetostriction, and thermal expansion of the Y 2 Fe 17 single crystal were studied. The forced magnetostriction and magnetostriction constants were investigated in the temperature range of the magnetic ordering close to the room temperature. The giant field induced volume magnetostriction was discovered in the room temperature region in the magnetic field up to 1.2 T. The contributions of both anisotropic singleion and isotropic pair exchange interactions to the volume magnetostriction and magnetostriction constants were determined. The experimental results were interpreted within the framework of the Standard Theory of Magnetostriction and the Landau thermodynamic theory. It was found out that the giant values of the volume magnetostriction were caused by the strong dependence of the 3d-electron Coulomb charge repulsion on the deformations and width of the 3d-electron energy band.