2021
DOI: 10.1007/s10884-021-10080-8
|View full text |Cite
|
Sign up to set email alerts
|

Invariant Algebraic Surfaces of Polynomial Vector Fields in Dimension Three

Abstract: We discuss criteria for the nonexistence, existence and computation of invariant algebraic surfaces for three-dimensional complex polynomial vector fields, thus transferring a classical problem of Poincaré from dimension two to dimension three. Such surfaces are zero sets of certain polynomials which we call semi-invariants of the vector fields. The main part of the work deals with finding degree bounds for irreducible semi-invariants of a given polynomial vector field that satisfies certain properties for its… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 31 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?