2019
DOI: 10.1088/1742-6596/1368/4/042003
|View full text |Cite
|
Sign up to set email alerts
|

Invariant manifold of variable stability in the Koper model

Abstract: The Koper model is a vector field that was developed to study electrochemical oscillations arising in diffusion processes. In the framework of this paper, we consider the Koper model of chemical reactors. It is a three-dimensional autonomous slow-fast system with a folded node and a supercritical singular Hopf bifurcation. The aim is to construct the expansion of invariant manifold with variable stability and corresponding gluing function using the flow curvature method. We show that Koper model has sufficient… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 24 publications
0
2
0
1
Order By: Relevance
“…Фактически, такие поверхности целиком состоят из траекторий-уток, каждая из которых моделирует критическое, но при этом безопасное протекание некоторого процесса. Подобный подход к моделированию критических явлений был впервые применен в работе [8], а затем многократно использован в работах [9][10][11].…”
Section: предварительные сведенияunclassified
“…Фактически, такие поверхности целиком состоят из траекторий-уток, каждая из которых моделирует критическое, но при этом безопасное протекание некоторого процесса. Подобный подход к моделированию критических явлений был впервые применен в работе [8], а затем многократно использован в работах [9][10][11].…”
Section: предварительные сведенияunclassified
“…The Koper model [1] is an idealized model of the chemical reaction described in [2]. Invariant manifolds are useful in investigating the dynamical behavior of the multiscale systems [3,4].…”
Section: Introductionmentioning
confidence: 99%
“…The existence of a slow manifold for nonlocal fast-slow stochastic evolutionary equations is proved in [21,22]. An invariant manifold of variable stability in the Koper model is established in [2]. It continues to be an active topic on the characterization of a stochastic Koper model driven by the Lévy process for both theoretical reasons and applications.…”
Section: Introductionmentioning
confidence: 99%