1986
DOI: 10.1007/bfb0099031
|View full text |Cite
|
Sign up to set email alerts
|

Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

6
263
0
3

Year Published

1992
1992
2017
2017

Publication Types

Select...
5
3
2

Relationship

0
10

Authors

Journals

citations
Cited by 266 publications
(272 citation statements)
references
References 0 publications
6
263
0
3
Order By: Relevance
“…• As for regularity issues (curvature and distortion bounds, absolute continuity), it may be missleading that properties similar to our requirements automatically hold in the general framework of Pesin and Katok-Strelcyn theory, see [7] and [13]. Nonetheless, in our setting it is crucial to have uniform control of curvatures, distortions and holonomies on the phase space.…”
Section: The Conditions Of Ergodicitymentioning
confidence: 99%
“…• As for regularity issues (curvature and distortion bounds, absolute continuity), it may be missleading that properties similar to our requirements automatically hold in the general framework of Pesin and Katok-Strelcyn theory, see [7] and [13]. Nonetheless, in our setting it is crucial to have uniform control of curvatures, distortions and holonomies on the phase space.…”
Section: The Conditions Of Ergodicitymentioning
confidence: 99%
“…Pour certains ouverts convexes il existe des trajectoires du billiard qui ne sont pas définies pour tout temps t: la série des temps successifs entre rebonds converge (voir [7]). Cependant l'ensemble de tels points est de mesure nulle pour la mesure de Liouville (voir [10]j, on peut définir presque partout un flot (€?<) sur B(îî), laissant invariant la projection À sur B(0) de la mesure de Liouville À; par définition îî est un billiard ergodique si le système dynamique (B(îî), ((?<), A) l'est. Comme ((?<) n'est pas continu en général, il est délicat de traduire le théorème 4 de propagation en termes de mesures invariantes par le flot du billiard, c'est pourquoi nous introduirons plus loin une classe particulière de mesures sur 9^.S*(î. Jx Jx où h = -r_ est continue > 0 sur X. Notre théorème 1 découle alors du résultat général suivant:…”
Section: Mesures Invariantes Sur Des Billîards Convexesunclassified
“…Pesin first proved general results concerning the existence of families of stable manifolds and their absolute continuity (see [14]) and deduced therefrom the formula. Later, results were generalized to deterministic dynamical systems preserving only a Borel measure (see [18], [7]) and for dynamical systems with singularities (see [9]). In [4] one finds a comprehensive and self-contained account on the theory dynamical systems with nonvanishing Lyapunov exponents, i.e.…”
Section: Introductionmentioning
confidence: 99%