2022
DOI: 10.48550/arxiv.2206.02097
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Invariant Seifert surfaces for strongly invertible knots

Abstract: We study invariant Seifert surfaces for strongly invertible knots, and prove that the gap between the equivariant genus (the minimum of the genera of invariant Seifert surfaces) of a strongly invertible knot and the (usual) genus of the underlying knot can be arbitrary large. This forms a sharp contrast with Edmonds' theorem that every periodic knot admits an invariant minimal genus Seifert surface. We also prove variants of Edmonds' theorem, which are useful in studying invariant Seifert surfaces for strongly… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?