Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)
DOI: 10.1109/cdc.2001.914717
|View full text |Cite
|
Sign up to set email alerts
|

Invariant sets for constrained nonlinear discrete-time systems with application to feasibility in model predictive control

Abstract: An understanding of invariant set theory is essential in the design of controllers for constrained systems, since state and control constraints can be satisfied if and only if the initial state belongs to a positively invariant set for the closed-loop system. The paper briefly reviews some concepts in invariant set theory and shows that the various sets can be computed using a single recursive algorithm. The ideas presented in the first part of the paper are applied to the fundamental design goal of guaranteei… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
95
0
4

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 137 publications
(100 citation statements)
references
References 15 publications
1
95
0
4
Order By: Relevance
“…In control theory, invariant sets are used to prove stability of model predictive control (also called receding horizon control), as shown in [3]. In [4] a nonlinear model predictive control framework is presented that guarantees nominal feasibility using invariant sets by providing necessary and sufficient conditions on the control horizon, the prediction horizon and the constraint set. Receding horizon control for UAVs based on mixed integer linear programming is presented in [5].…”
Section: Related Workmentioning
confidence: 99%
“…In control theory, invariant sets are used to prove stability of model predictive control (also called receding horizon control), as shown in [3]. In [4] a nonlinear model predictive control framework is presented that guarantees nominal feasibility using invariant sets by providing necessary and sufficient conditions on the control horizon, the prediction horizon and the constraint set. Receding horizon control for UAVs based on mixed integer linear programming is presented in [5].…”
Section: Related Workmentioning
confidence: 99%
“…Un enfoque diferente mediante el cual es posible analizar la Controlabilidad de Estado es por medio de los Mé-todos en Teoría de Conjuntos en Control (MTCC), la cual en los últimos años se ha venido utilizando en diferentes aplicaciones de control [13], [14], [15], [16]. Los MTCC son equivalentes a la controlabilidad de estado, tal como se demuestra en [17]; no obstante, los MTCC permiten no sólo determinar si la controlabilidad de estado se verifica o no, sino que además indica que tan controlable es el sistema dinámico y permite incluir las restricciones en los estados y en la acción de control de una manera natural [14].…”
Section: Controlabilidad De Estadosunclassified
“…En los últimos años, los métodos de teoría de conjuntos aplicados a control se han venido aplicando con éxito, especialmente en el diseño de controladores predictivos basados en modelos [13,14,15,16,17]. Los conjuntos permiten no sólo verificar que se cumpla o no la propiedad de controlabilidad, sino que además brinda una medida cuantitativa que permite estimar que tan controlable es el proceso, aportando por tanto mayores elementos de juicio a la hora de diseñar un sistema de control.…”
Section: Introductionunclassified
“…We apply this latter definition of S j . Methods to compute controlled invariant sets for LTI systems can be found in for instance [10]. Remark 1.…”
Section: Problem Descriptionmentioning
confidence: 99%