Abstract. A long-term, robust observational record of atmospheric black carbon (BC) concentrations at Fukue Island for 2009–2019 was produced by unifying data from a continuous soot-monitoring system and a multi-angle absorption photometer. This record was then used to analyze emission trends from China. We identified a rapid reduction in BC concentrations of (−5.8 ± 1.5) % y−1 or −48 % from 2010 to 2018. We concluded that an emission change of (−5.3 ± 0.7) % y−1, related to changes in China of as much as −4.6 % y−1, was the main underlying driver. This evaluation was made after correcting for the interannual meteorological variability, by using regional atmospheric chemistry model simulations (WRF/CMAQ) with constant emissions. This resolves current fundamental disagreements about the sign of the BC emission trend from China over the past decade, assessed from bottom-up emission inventories; our analysis supported inventories reflecting the governmental clean air actions after 2010 (e.g., MEIC1.3, ECLIPSE v5a and v6b, and REAS updated) and recommended revision to those not (e.g., CEDS). Our estimated emission trends were fairly uniform over seasons but diverse among air-mass origins. Stronger BC reductions occurred in regions of South-Central East China, accompanied by CO emission reduction, while weaker BC reductions occurred in North-Central East China and Northeast China. Prior to 2017, the BC and CO emission trends were both unexpectedly positive in Northeast China during winter months, possibly influencing climate at higher latitudes. The pace of emission reduction over China surpasses those of SSP1 scenarios (SSP: shared socioeconomic pathways) for 2015–2030, suggesting highly successful emission control policies. At Fukue Island, the BC fraction of PM2.5 also steadily decreased over the last decade, suggesting that BC emission reduction started without significant delay with respect to other pollutants, such as NOx and SO2, which are among key precursors of scattering PM2.5.