Large earthquakes rupture faults over hundreds of kilometers within minutes. Finite‐fault models image these processes and provide observational constraints for understanding earthquake physics. However, finite‐fault inversions are subject to non‐uniqueness and uncertainties. The diverse range of published models for the well‐recorded 2011 9.0 Tohoku‐Oki earthquake illustrates this challenge, and its rupture process remains under debate. Here, we comprehensively compare 32 published finite‐fault models of the Tohoku‐Oki earthquake. We aim to identify the most coherent slip features of the Tohoku‐Oki earthquake from these slip models and develop a new method for quantitatively analyzing their variations. We find that the models correlate poorly at 1‐km subfault size, irrespective of the data type. In contrast, model agreement improves significantly with increasing subfault sizes, consistently showing that the largest slip occurs up‐dip of the hypocenter near the trench. We use the set of models to test the sensitivity of available teleseismic, regional seismic, and geodetic observations. For the large Tohoku‐Oki earthquake, we find that the analyzed finite‐fault models are less sensitive to slip features smaller than 64 km. When we use the models to compute synthetic seafloor deformation, we observe strong variations in the synthetics, suggesting their sensitivity to small‐scale slip features. Our newly developed approach offers a quantitative framework to identify common features in distinct finite‐fault slip models and to analyze their robustness using regional and global geophysical observations for megathrust earthquakes. Our results indicate that dense offshore instrumentation is critical for resolving the rupture complexities of megathrust earthquakes.