We present an analysis of proton number fluctuations in √ sNN = 2.4 GeV 197 Au+ 197 Au collisions measured with the High-Acceptance DiElectron Spectrometer (HADES) at GSI. With the help of extensive detector simulations done with IQMD transport model events including nuclear clusters, various nuisance effects influencing the observed proton cumulants have been investigated. Acceptance and efficiency corrections have been applied as a function of fine grained rapidity and transverse momentum bins, as well as considering local track density dependencies. Next, the effects of volume changes within particular centrality selections have been considered and beyond-leadingorder corrections have been applied to the data. The efficiency and volume corrected proton number moments and cumulants Kn of orders n = 1, . . . , 4 have been obtained as a function of centrality and phase-space bin, as well as the corresponding correlators Cn. We find that the observed correlators show a power-law scaling with the mean number of protons, i.e. Cn ∝ N n , indicative of mostly long-range multi-particle correlations in momentum space. We also present a comparison of our