We present an analytic expression of the nonperturbative free energy of a double-well supersymmetric matrix model in its double scaling limit, which corresponds to two-dimensional type IIA superstring theory on a nontrivial Ramond-Ramond background. To this end we draw upon the wisdom of random matrix theory developed by Tracy and Widom, which expresses the largest eigenvalue distribution of unitary ensembles in terms of a Painlevé II transcendent. Regularity of the result at any value of the string coupling constant shows that the third-order phase transition between a supersymmetry-preserving phase and a supersymmetry-broken phase, previously found at the planar level, becomes a smooth crossover in the double scaling limit. Accordingly, the supersymmetry is always broken spontaneously as its order parameter stays nonzero for the whole region of the coupling constant. Coincidence of the result with the unitary one-matrix model suggests that one-dimensional type 0 string theories partially correspond to the type IIA superstring theory. Our formulation naturally allows for introduction of an instanton chemical potential, and reveals the presence of a novel phase transition, possibly interpreted as condensation of instantons.