2021
DOI: 10.1002/mma.7436
|View full text |Cite
|
Sign up to set email alerts
|

Inverse spectral problems for Dirac operators on a star graph with mixed boundary conditions

Abstract: This paper is devoted to some inverse spectral problems for Dirac operators on a star graph with mixed boundary conditions in boundary vertices. By making use of Rouché's theorem, we derive the eigenvalue asymptotics of these operators. Besides, we show that for each of these operators, if the potentials are known a priori for all but one edge on the graph, then the potential on the remaining edge is uniquely determined by part of the potential on this edge and part of its spectrum. Our method relies upon some… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 21 publications
0
0
0
Order By: Relevance