“…Numerous studies have been conducted on developing various optimization algorithms, especially those based on natural phenomena, and their application to solve optimization problems in various fields of science and engineering (Nama et al., 2017). These algorithms have also been used to solve ill‐posed magnetic inverse problems, including Ant Colony Optimization (Liu et al., 2015; Srivastava et al., 2014), Barnacles Mating Optimization (Ai et al., 2022), Bat Optimization Algorithm (Essa & Diab, 2022), Differential Evolution (DE) (Balkaya et al., 2017; Du et al., 2021), Differential Search (Balkaya & Kaftan, 2021; Özyalın, 2023), Genetic Algorithm (Kaftan, 2017; Montesinos et al., 2016; Sohouli et al., 2022), Genetic‐Price Algorithm (GPA) (Di Maio et al., 2020), Gray Wolf Optimization (Agarwal et al., 2018), Hunger Games Search Algorithm (Ai et al., 2023), Manta Ray Foraging Optimization Algorithm (MRFO) (Ben, Ekwok, et al, 2022; Ben et al., 2021), Particle Swarm Optimization (PSO) (Ekinci et al., 2020; Ekwok et al., 2023; Liu et al., 2018; Srivastava & Agarwal, 2010), Social Spider Optimization (Ben, Akpan, et al., 2022), Whale Optimization Algorithm (WOA) (Divakar et al., 2018; Gobashy et al., 2020) and Simulated Annealing (SA) (Biswas et al., 2022; Biswas & Rao, 2021; Shinu & Dubey, 2023). The choice of the most appropriate algorithm for a given optimization problem may depend on several factors, such as the complexity of the problem, the size of the search space, the required precision, and the available computational resources (Dragoi & Dafinescu, 2021).…”