Drop-on-demand inkjet printing is a promising and commercially relevant technology for producing organic electronic devices of arbitrary shape on a wide variety of different substrates. In this work we transfer the inkjet printing process of organic photovoltaic devices from 2D to 3D substrates, using a 5-axis robot system equipped with a multi‑nozzle inkjet printing unit. We present a ready-to-use 3D printing system for industrial application, using a 5-axis motion system controlled by commercial 3D motion software, combined with a commonly used multi-nozzle inkjet print head controlled by the corresponding printing software. The very first time inkjet-printed solar cells on glass/ITO with power conversion efficiencies (PCE) of up to 7% are realized on a 3D object with surfaces tilted by angles of up to 60° against the horizontal direction. Undesired ink flow during deposition of the inkjet-printed layers was avoided by proper ink formulation. In order to be able to print organic (opto-)electronic devices also on substrates without sputtered indium tin oxide bottom electrode, the bottom electrode was inkjet-printed from silver nanoparticle (AgNP) ink, resulting in the first all inkjet-printed (i.e., including bottom electrode) solar cell on a 3D object ever with a record PCE of 2.5%. This work paves the way for functionalizing even complex objects, such as cars, mobile phones, or “Internet of Things” (IoT) applications with inkjet-printed (opto-)electronic devices.