BACKGROUND: Whey protein concentrate (WPC)/pullulan (PUL) hydrogel is applied as a microencapsulation wall material to protect probiotics. However, the interactions between WPC and PUL during gelation have not been clarified. In the present study, the effects of PUL concentration and pH on the interactions between WPC and PUL during gelation were evaluated with respect to appearance, zeta-potential, sulfhydryl group amount, surface hydrophobicity and infrared spectroscopy measurements. The rheological properties of WPC/PUL gels were also determined. RESULTS: The results obtained showed that a proper concentration (0.40 g mL-1) of PUL could improve the gel by enhancing the strength of hydrogen bonding, electrostatic interactions and exposure of hydrophobic groups, whereas too much PUL inhibited the formation of disulfide bonds. Furthermore, hydrophobic interactions, disulfide bonds and hydrogen bonds were destroyed in varying degrees under an alkaline environment. The rheological results also demonstrated a similar effect of PUL concentration and pH on the storage modulus (G') of WPC/PUL gels. CONCLUSION: When the WPC/PUL gel was formed at PUL concentration of 0.40 g mL-1 and pH 7.0, the interaction between WPC and PUL could be enhanced, which is beneficial for the future application of WPC/PUL gels in the food industry.