Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Kidney organoids — 3D representations of kidneys made either from pluripotent or tissue stem cells — have been available for well over a decade. Their application could confer notable benefits over longstanding in vivo approaches with the potential for clinically aligned human cells and reduced ethical burdens. They been used, at a proof-of-concept level, in development in disease modeling (including with patient-derived stem cells), and in screening drugs for efficacy/toxicity. They differ from real kidneys: they represent only foetal-stage tissue, in their simplest forms they lack organ-scale anatomical organization, they lack a properly arranged vascular system, and include non-renal cells. Cell specificity may be improved by better techniques for differentiation and/or sorting. Sequential assembly techniques that mimic the sequence of natural development, and localized sources of differentiation-inducing signals, improve organ-scale anatomy. Organotypic vascularization remains a challenge: capillaries are easy, but the large vessels that should serve them are absent from organoids and, even in cultured real kidneys, these large vessels do not survive without blood flow. Transplantation of organoids into hosts results in their being vascularized (though probably not organotypically) and in some renal function. It will be important to transplant more advanced organoids, with a urine exit, in the near future to assess function more stringently. Transplantation of human foetal kidneys, followed by nephrectomy of host kidneys, keeps rats alive for many weeks, raising hope that, if organoids can be produced even to the limited size and complexity of foetal kidneys, they may one day be useful in renal replacement.
Kidney organoids — 3D representations of kidneys made either from pluripotent or tissue stem cells — have been available for well over a decade. Their application could confer notable benefits over longstanding in vivo approaches with the potential for clinically aligned human cells and reduced ethical burdens. They been used, at a proof-of-concept level, in development in disease modeling (including with patient-derived stem cells), and in screening drugs for efficacy/toxicity. They differ from real kidneys: they represent only foetal-stage tissue, in their simplest forms they lack organ-scale anatomical organization, they lack a properly arranged vascular system, and include non-renal cells. Cell specificity may be improved by better techniques for differentiation and/or sorting. Sequential assembly techniques that mimic the sequence of natural development, and localized sources of differentiation-inducing signals, improve organ-scale anatomy. Organotypic vascularization remains a challenge: capillaries are easy, but the large vessels that should serve them are absent from organoids and, even in cultured real kidneys, these large vessels do not survive without blood flow. Transplantation of organoids into hosts results in their being vascularized (though probably not organotypically) and in some renal function. It will be important to transplant more advanced organoids, with a urine exit, in the near future to assess function more stringently. Transplantation of human foetal kidneys, followed by nephrectomy of host kidneys, keeps rats alive for many weeks, raising hope that, if organoids can be produced even to the limited size and complexity of foetal kidneys, they may one day be useful in renal replacement.
Organoids are microtissues that recapitulate the complex structural organization and functions of tissues and organs. Nanoparticles have several specific properties that must be considered when replacing animal models with in vitro studies, such as the formation of a protein corona, accumulation, ability to overcome tissue barriers, and different severities of toxic effects in different cell types. An increase in the number of articles on toxicology research using organoid models is related to an increase in publications on organoids in general but is not related to toxicology-based publications. We demonstrate how the quantitative assessment of toxic changes in the structure of organoids and the state of their cell collections provide more valuable results for toxicological research and provide examples of research methods. The impact of the tested materials on organoids and their differences are also discussed. In conclusion, we highlight the main challenges, the solution of which will allow researchers to approach the replacement of in vivo research with in vitro research: biobanking and standardization of the structural characterization of organoids, and the development of effective screening imaging techniques for 3D organoid cell organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.