Background
Tobacco smoking and e-cigarette use are strongly associated, but it is currently unclear whether this association is causal, or due to shared factors that influence both behaviours such as a shared genetic liability. The aim of this study was to investigate whether polygenic risk scores (PRS) for smoking initiation are associated with ever use of e-cigarettes.
Methods and findings
Smoking initiation PRS were calculated for young adults (N = 7,859, mean age = 24 years, 51% male) of European ancestry in the Avon Longitudinal Study of Parents and Children, a prospective birth cohort study initiated in 1991. PRS were calculated using the GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN) summary statistics. Five thresholds ranging from 5 × 10−8 to 0.5 were used to calculate 5 PRS for each individual. Using logistic regression, we investigated the association between smoking initiation PRS and the main outcome, self-reported e-cigarette use (n = 2,894, measured between 2016 and 2017), as well as self-reported smoking initiation and 8 negative control outcomes (socioeconomic position at birth, externalising disorders in childhood, and risk-taking in young adulthood). A total of 878 young adults (30%) had ever used e-cigarettes at 24 years, and 150 (5%) were regular e-cigarette users at 24 years. We observed positive associations of similar magnitude between smoking initiation PRS (created using the p < 5 × 10−8 threshold) and both smoking initiation (odds ratio (OR) = 1.29, 95% CI 1.19 to 1.39, p < 0.001) and ever e-cigarette use (OR = 1.24, 95% CI 1.14 to 1.34, p < 0.001) by the age of 24 years, indicating that a genetic predisposition to smoking initiation is associated with an increased risk of using e-cigarettes. At lower p-value thresholds, we observed an association between smoking initiation PRS and ever e-cigarette use among never smokers. We also found evidence of associations between smoking initiation PRS and some negative control outcomes, particularly when less stringent p-value thresholds were used to create the PRS, but also at the strictest threshold (e.g., gambling, number of sexual partners, conduct disorder at 7 years, and parental socioeconomic position at birth). However, this study is limited by the relatively small sample size and potential for collider bias.
Conclusions
Our results indicate that there may be a shared genetic aetiology between smoking and e-cigarette use, and also with socioeconomic position, externalising disorders in childhood, and risky behaviour more generally. This indicates that there may be a common genetic vulnerability to both smoking and e-cigarette use, which may reflect a broad risk-taking phenotype.