Since the high dimension and complexity of the large-scale spiking neural network, it is difficult to research the network dynamics. In recent decades, the mean-field approximation has been a useful method to reduce the dimension of the network. In this study, we construct a large-scale spiking neural network with quadratic integrate-and-fire neurons and reduce it to a mean-field model to research the network dynamics. We find that the activity of the mean-field model is consistent with the network activity. Based on this agreement, a two-parameter bifurcation analysis is performed on the mean-field model to understand the network dynamics. The bifurcation scenario indicates that the network model has the quiescence state, the steady state with a relatively high firing rate, and the synchronization state which correspond to the stable node, stable focus, and stable limit cycle of the system, respectively. There exist several stable limit cycles with different periods, so we can observe the synchronization states with different periods. Additionally, the model shows bistability in some regions of the bifurcation diagram which suggests that two different activities coexist in the network. The mechanisms that how these states switch are also indicated by the bifurcation curves.