Investigating Entropy for Extractive Document Summarization
Alka Khurana,
Vasudha Bhatnagar
Abstract:Automatic text summarization aims to cut down readers' time and cognitive effort by reducing the content of a text document without compromising on its essence. Ergo, informativeness is the prime attribute of document summary generated by an algorithm, and selecting sentences that capture the essence of a document is the primary goal of extractive document summarization.In this paper, we employ Shannon's entropy to capture informativeness of sentences. We employ Non-negative Matrix Factorization (NMF) to revea… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.