2021
DOI: 10.3390/jimaging7080146
|View full text |Cite
|
Sign up to set email alerts
|

Investigating Semantic Augmentation in Virtual Environments for Image Segmentation Using Convolutional Neural Networks

Abstract: Collecting real-world data for the training of neural networks is enormously time- consuming and expensive. As such, the concept of virtualizing the domain and creating synthetic data has been analyzed in many instances. This virtualization offers many possibilities of changing the domain, and with that, enabling the relatively fast creation of data. It also offers the chance to enhance necessary augmentations with additional semantic information when compared with conventional augmentation methods. This raise… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?