The toxic manifestations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant, primarily depend on its ability to activate aryl hydrocarbon receptor (AhR), which is a ligand-dependent transcription factor belonging to the superfamily of basic-helix-loop-helix DNA-binding proteins. In the present study, we aimed to identify novel protein receptor targets for TCDD using computational and
in vitro
validation experiments. Interestingly, results from computational methods predicted that Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) could be one of the potential targets for TCDD in both mouse and humans. Results from molecular docking studies showed that human VEGFR1 (hVEGFR1) has less affinity towards TCDD compared to the mouse VEGFR1 (mVEGFR1).
In vitro
validation results showed that TCDD can bind and phosphorylate hVEGFR1. Further, results from molecular dynamic simulation studies showed that hVEGFR1 interaction with TCDD is stable throughout the simulation time. Overall, the present study has identified VEGFR1 as a novel target for TCDD, which provides the basis for further elucidating the role of TCDD in angiogenesis.