Perovskite-type oxynitrides hold great potential for optical applications due to their excellent visible light absorption properties. However, only a limited number of such oxynitrides with modulated physical properties are available to date and therefore alternative fabrication strategies are needed to be developed. Here, we introduce such an alternative strategy involving a precursor microstructure controlled ammonolysis. This leads to the perovskite family member LaTa(IV)O 2 N containing unusual Ta 4+ cations. The adjusted precursor microstructures as well as the ammonia concentration are the key parameters to precisely control the oxidation state and O:N ratio in LaTa(O,N) 3. LaTa(IV)O 2 N has a bright red colour, an optical bandgap of 1.9 eV and a low (optically active) defect concentration. These unique characteristics make this material suitable for visible light-driven applications and the identified key parameters will set the terms for the targeted development of further promising perovskite family members.