With extremely challenging and unforgiving ultradeepwater environments combined with those of high-pressure, high-temperature (HP/HT) reservoirs, the costs associated with not understanding each unique dynamic environment could be very high. The complexities of the hardware systems are akin to human beings' internal systems, involving dependent and independent interactions. When these complex systems are deployed into unforgiving environments without appropriate safeguards/assurances, unforeseen adverse issues will eventually occur.To help reduce the likelihood of calamitous failures or well completion issues, prejob perforating and well construction simulations have become industry standard. Notwithstanding the utilization of industry accepted models, issues continue to arise. Assurance models that were previously industry-standard lack the complexity of newer, improved systems on the horizon that are better able to quantify the dynamic events experienced in these extremely challenging environments. In essence the modeling technology has not kept pace with the present environments we perforate in.Understanding and managing stress and shock loads imparted to downhole tools during their full range of operating conditions is critical to the reliability of such tools. In the case of a perforating gun string, the energetic material detonation forces inducesignificant stresses on adjoining tools (Dobratz 1985). This paper discusses the case of a perforating string affecting an adjoining interval control valve (ICV) in the tubing string by a 4 5/8-in. gun system.One of the most significant stresses experienced by downhole equipment is the loading imparted by the release of energetic material detonation forces during downhole perforating. Knowledge of the dynamic response of downhole perforating gun strings during detonation is critical to the development of better performing gun systems, equipment, and optimal job designs with maximum reliability.Numerical simulation is central to advancing this understanding, but available simulation tools have generally been limited to hydrodynamics models focused on optimizing shaped charge perforating performance (Han et al. 2010) and to highly simplified string and wellbore models lacking the fidelity required to capture the full system behavior with sufficient accuracy. Limited value of current models has been attributed to the general lack of relevant data needed for proper model calibration and validation.Approaching the development of a resolute system model that addresses these shortcomings required