In recent years, ceramic membranes have received widespread focus in the area of liquid separation because of their high permeability, strong hydrophilicity, and good chemical stability. However, in practical applications, the surface of ceramic membranes is prone to be contaminated, which degrades the permeation flux of ceramic membranes during the separation process. Inspired by mussels, we imitate the biomimetic mineralization process to prepare a ceramic membrane of nano–silica on the pre-modified zirconia surface by co-deposited polydopamine/polyethyleneimine. The modified ceramic membranes were utilized for the purpose of oil–water separation. Separation performance has been tested using a disc ceramic membrane dynamic filtration device. The outcomes revealed an enhanced permeability in the modified membrane, measuring as 159 L m−2 h−1 bar−1, surpassing the separation flux of the unmodified membrane, which was 104 L m−2 h−1 bar−1. The permeation performance of the modified membrane was increased to 1.5 times. Modified ceramic membranes are highly resistant to fouling. From the beginning to the end of separation process, the oil rejection rate of the modified ceramic membrane is always higher than 99%. After a 2 h oil–water separation test run, modified ceramic membrane permeate flux can be restored to 91% after cleaning. It has an enormous capacity for application in the area of oil–water separation.