This work investigates the milling of the surface of glass and carbon fiber-reinforced plastics using tools with a polycrystalline diamond insert. The milling process was conducted under three different conditions, namely without the use of a cooling liquid, with oil mist cooling, and with emulsion cooling. The milling process of composites was conducted with variable technological parameters. The variable milling parameters were feed per tooth and cutting speed. The novelty of this work is the use of recurrence methods based on the cutting force signal to analyze the milling of composites with three types of cooling. The primary aim of the study was to determine the effect of variable technological milling parameters on cutting force and to select recurrence quantifications that would be sensitive to the cooling method. It has been shown that recurrence quantifications such as determinism (DET), laminarity (LAM), averaged diagonal length (L), trapping time (TT), recurrence time of the second type (T2), and entropy (ENTR) are sensitive to the cooling methods applied for the tested composite materials. The results have shown that it is possible to determine common ranges of changes in sensitive recurrence quantifications for the two tested variables parameters of milling: 0.63–0.94 (DET), 0.69–0.97 (LAM), 7.30–13.48 (L), 2.92–4.98 (TT), 17.01–38.25 (T2), 2.02–3.16 (ENTR). The ANOVA analysis results have confirmed that the studied variables have a significant impact on the recurrence quantifications.