2017
DOI: 10.15866/ireme.v11i1.9873
|View full text |Cite
|
Sign up to set email alerts
|

Investigating the Impact of Physiological Aspect on Cow Milk Production Using Artificial Intelligence

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
3

Year Published

2018
2018
2024
2024

Publication Types

Select...
4
2

Relationship

1
5

Authors

Journals

citations
Cited by 7 publications
(8 citation statements)
references
References 0 publications
0
5
0
3
Order By: Relevance
“…The use of artificial intelligence techniques is still not widely used for managing the culling although they have been used for other purposes. For instance, Cavero et al [3] developed a fuzzy logic model for mastitis detection; [13,15] are some examples of using neural networks for classification and control of mastitis in cows milked using an automatic milking system; Shainfar et al [10] used fuzzy neural networks to predict breeding values for dairy cattle; Grzesiak et al [6] also used neural networks to predict milk production; Sugiono et al [12] built an adaptive system (BPNN) to predict performance of dairy cattle based on environmental and physical data; and Sitkowska et al [11] used decision trees to predict the increment of the levels of somatic cells in milk. Thus, to our knowledge, Artificial Intelligence techniques and, particularly, decision trees, have not been used to support the decision of culling the herd.…”
Section: Related Workmentioning
confidence: 99%
“…The use of artificial intelligence techniques is still not widely used for managing the culling although they have been used for other purposes. For instance, Cavero et al [3] developed a fuzzy logic model for mastitis detection; [13,15] are some examples of using neural networks for classification and control of mastitis in cows milked using an automatic milking system; Shainfar et al [10] used fuzzy neural networks to predict breeding values for dairy cattle; Grzesiak et al [6] also used neural networks to predict milk production; Sugiono et al [12] built an adaptive system (BPNN) to predict performance of dairy cattle based on environmental and physical data; and Sitkowska et al [11] used decision trees to predict the increment of the levels of somatic cells in milk. Thus, to our knowledge, Artificial Intelligence techniques and, particularly, decision trees, have not been used to support the decision of culling the herd.…”
Section: Related Workmentioning
confidence: 99%
“…El análisis comparativo realizado por estos autores permitió identificar que aunque la ANN-MLP obtuvo resultados aceptables, los pronósticos más precisos se obtuvieron mediante la función de ajuste de superficies y la NARX, respectivamente. Sugiono et al (2016) y Sugiono et al (2017), evidenciaron que la aplicación de un algoritmo genético para fortalecer el aprendizaje de un MLP, permitió realizar eficientemente el pronóstico de las producciones lecheras del ganado de la raza Holstein Friesian con un valor de MSE inferior a 0.0035. Dongre et al (2017), demostraron que las producciones lecheras del ganado de la raza Deoni pueden ser pronosticadas eficientemente mediante una ANN de tipo MLP, con valores de R 2 superiores al 89% y de RMSE inferiores a 0.139.…”
Section: Rq4 ¿Qué Tipo De Ann Realiza El Pronóstico De Las Produccion...unclassified
“…La aplicación de modelos de pronóstico en la industria láctea representa un tema de interés para la comunidad científica internacional (Perdigón Llanes & González Benítez, 2020). Sin embargo, su realización constituye una actividad compleja porque son diversos los factores que influyen en la producción de este alimento (Perdigón Llanes & González Benítez, 2020;Sugiono et al, 2017).…”
Section: Introductionunclassified
“…In the end, the neural network was trained with selected weight connection. According to the reference [36], the best BPNN structure is described as follows: one hidden layer, initial neuron = 17, tanh transfer function between input and hidden layer, the linear sigmoid transfer function between the hidden layer and output layer, quick propagation learning algorithm, Static/Dynamic Zoometry Concept to Design Cattle Facilities Using Back Propagation Neural… http://dx.doi.org/10.5772/intechopen.75136…”
Section: Back Propagation Neural Network (Bpnn)mentioning
confidence: 99%