To explore the effect of vermicompost on the yield and quality of tomato cultivated in salty soil, we investigated the soil chemical properties, the yield, vitamin C, organic acid, soluble solids, and nitrate of fruit, photosynthesis, and carbohydrates of plants grown under various salt levels applied with the application of either commercial chemical fertilizers, cow manure, or vermicompost. Results showed that the tomato yield was not increased from the chemical fertilizer application, while there was an increase from the cow manure and vermicompost (increased 31.7% and 65.2%, respectively) under salt stress. Compared to no salt stress, the contents of vitamin C, organic acid, soluble solids, and nitrate increased 26.55%, 40.59%, 46.31%, and 35.08%, respectively, under salt stress (2 g NaCl·kg−1 soil). Compared with the Control, the application of chemical fertilizers failed to improve the sugar/acid ratio but increased nitrate content, while cow manure and vermicompost improved the sugar/acid ratio by 42.0% and 73.1%, respectively. Particularly, vermicompost increased vitamin C and reduced nitrate to the greatest extent among the different fertilizer treatments. The decrease in sodium (Na+) in the roots and leaves, increase in carbohydrates in fruit, and photosynthetic efficiency of leaves imply an amendment effect of vermicompost on salt stress. Moreover, vermicompost also facilitated the transit of carbohydrates from leaves to fruits by increasing the accumulation of nitrogen, phosphate, and potassium in fruits, leaves, and roots, while decreasing proline and soluble protein accumulation in leaves and roots. In conclusion, vermicompost could alleviate the adverse effect of salt stress and improve tomato yield and fruit quality by improving the photosynthetic capacity and promoting carbohydrate transport to fruit. The findings give a new perspective on the beneficial effect of vermicompost on tomato yield and quality.