Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the paper, we investigate the moments $$\langle \xi _{2;a_1}^{\Vert ;n}\rangle $$ ⟨ ξ 2 ; a 1 ‖ ; n ⟩ of the axial-vector $$a_1(1260)$$ a 1 ( 1260 ) -meson distribution amplitude by using the QCD sum rules approach under the background field theory. By considering the vacuum condensates up to dimension-six and the perturbative part up to next-to-leading order QCD corrections, its first five moments at an initial scale $$\mu _0=1~{\mathrm{GeV}}$$ μ 0 = 1 GeV are $$\langle \xi _{2;a_1}^{\Vert ;2}\rangle |_{\mu _0} = 0.223 \pm 0.029$$ ⟨ ξ 2 ; a 1 ‖ ; 2 ⟩ | μ 0 = 0.223 ± 0.029 , $$\langle \xi _{2;a_1}^{\Vert ;4}\rangle |_{\mu _0} = 0.098 \pm 0.008$$ ⟨ ξ 2 ; a 1 ‖ ; 4 ⟩ | μ 0 = 0.098 ± 0.008 , $$\langle \xi _{2;a_1}^{\Vert ;6}\rangle |_{\mu _0} = 0.056 \pm 0.006$$ ⟨ ξ 2 ; a 1 ‖ ; 6 ⟩ | μ 0 = 0.056 ± 0.006 , $$\langle \xi _{2;a_1}^{\Vert ;8}\rangle |_{\mu _0} = 0.039 \pm 0.004$$ ⟨ ξ 2 ; a 1 ‖ ; 8 ⟩ | μ 0 = 0.039 ± 0.004 and $$\langle \xi _{2;a_1}^{\Vert ;10}\rangle |_{\mu _0} = 0.028 \pm 0.003$$ ⟨ ξ 2 ; a 1 ‖ ; 10 ⟩ | μ 0 = 0.028 ± 0.003 , respectively. We then construct a light-cone harmonic oscillator model for $$a_1(1260)$$ a 1 ( 1260 ) -meson longitudinal twist-2 distribution amplitude $$\phi _{2;a_1}^{\Vert }(x,\mu )$$ ϕ 2 ; a 1 ‖ ( x , μ ) , whose model parameters are fitted by using the least squares method. As an application of $$\phi _{2;a_1}^{\Vert }(x,\mu )$$ ϕ 2 ; a 1 ‖ ( x , μ ) , we calculate the transition form factors (TFFs) of $$D\rightarrow a_1(1260)$$ D → a 1 ( 1260 ) in large and intermediate momentum transfers by using the QCD light-cone sum rules approach. At the largest recoil point ($$q^2=0$$ q 2 = 0 ), we obtain $$ A(0) = 0.130_{ - 0.013}^{ + 0.015}$$ A ( 0 ) = 0 . 130 - 0.013 + 0.015 , $$V_1(0) = 1.898_{-0.121}^{+0.128}$$ V 1 ( 0 ) = 1 . 898 - 0.121 + 0.128 , $$V_2(0) = 0.228_{-0.021}^{ + 0.020}$$ V 2 ( 0 ) = 0 . 228 - 0.021 + 0.020 , and $$V_0(0) = 0.217_{ - 0.025}^{ + 0.023}$$ V 0 ( 0 ) = 0 . 217 - 0.025 + 0.023 . By applying the extrapolated TFFs to the semi-leptonic decay $$D^{0(+)} \rightarrow a_1^{-(0)}(1260)\ell ^+\nu _\ell $$ D 0 ( + ) → a 1 - ( 0 ) ( 1260 ) ℓ + ν ℓ , we obtain $${\mathcal {B}}(D^0\rightarrow a_1^-(1260) e^+\nu _e) = (5.261_{-0.639}^{+0.745}) \times 10^{-5}$$ B ( D 0 → a 1 - ( 1260 ) e + ν e ) = ( 5 . 261 - 0.639 + 0.745 ) × 10 - 5 , $${\mathcal {B}}(D^+\rightarrow a_1^0(1260) e^+\nu _e) = (6.673_{-0.811}^{+0.947}) \times 10^{-5}$$ B ( D + → a 1 0 ( 1260 ) e + ν e ) = ( 6 . 673 - 0.811 + 0.947 ) × 10 - 5 , $${\mathcal {B}}(D^0\rightarrow a_1^-(1260) \mu ^+ \nu _\mu )=(4.732_{-0.590}^{+0.685}) \times 10^{-5}$$ B ( D 0 → a 1 - ( 1260 ) μ + ν μ ) = ( 4 . 732 - 0.590 + 0.685 ) × 10 - 5 , $${\mathcal {B}}(D^+ \rightarrow a_1^0(1260) \mu ^+ \nu _\mu )=(6.002_{-0.748}^{+0.796}) \times 10^{-5}$$ B ( D + → a 1 0 ( 1260 ) μ + ν μ ) = ( 6 . 002 - 0.748 + 0.796 ) × 10 - 5 .
In the paper, we investigate the moments $$\langle \xi _{2;a_1}^{\Vert ;n}\rangle $$ ⟨ ξ 2 ; a 1 ‖ ; n ⟩ of the axial-vector $$a_1(1260)$$ a 1 ( 1260 ) -meson distribution amplitude by using the QCD sum rules approach under the background field theory. By considering the vacuum condensates up to dimension-six and the perturbative part up to next-to-leading order QCD corrections, its first five moments at an initial scale $$\mu _0=1~{\mathrm{GeV}}$$ μ 0 = 1 GeV are $$\langle \xi _{2;a_1}^{\Vert ;2}\rangle |_{\mu _0} = 0.223 \pm 0.029$$ ⟨ ξ 2 ; a 1 ‖ ; 2 ⟩ | μ 0 = 0.223 ± 0.029 , $$\langle \xi _{2;a_1}^{\Vert ;4}\rangle |_{\mu _0} = 0.098 \pm 0.008$$ ⟨ ξ 2 ; a 1 ‖ ; 4 ⟩ | μ 0 = 0.098 ± 0.008 , $$\langle \xi _{2;a_1}^{\Vert ;6}\rangle |_{\mu _0} = 0.056 \pm 0.006$$ ⟨ ξ 2 ; a 1 ‖ ; 6 ⟩ | μ 0 = 0.056 ± 0.006 , $$\langle \xi _{2;a_1}^{\Vert ;8}\rangle |_{\mu _0} = 0.039 \pm 0.004$$ ⟨ ξ 2 ; a 1 ‖ ; 8 ⟩ | μ 0 = 0.039 ± 0.004 and $$\langle \xi _{2;a_1}^{\Vert ;10}\rangle |_{\mu _0} = 0.028 \pm 0.003$$ ⟨ ξ 2 ; a 1 ‖ ; 10 ⟩ | μ 0 = 0.028 ± 0.003 , respectively. We then construct a light-cone harmonic oscillator model for $$a_1(1260)$$ a 1 ( 1260 ) -meson longitudinal twist-2 distribution amplitude $$\phi _{2;a_1}^{\Vert }(x,\mu )$$ ϕ 2 ; a 1 ‖ ( x , μ ) , whose model parameters are fitted by using the least squares method. As an application of $$\phi _{2;a_1}^{\Vert }(x,\mu )$$ ϕ 2 ; a 1 ‖ ( x , μ ) , we calculate the transition form factors (TFFs) of $$D\rightarrow a_1(1260)$$ D → a 1 ( 1260 ) in large and intermediate momentum transfers by using the QCD light-cone sum rules approach. At the largest recoil point ($$q^2=0$$ q 2 = 0 ), we obtain $$ A(0) = 0.130_{ - 0.013}^{ + 0.015}$$ A ( 0 ) = 0 . 130 - 0.013 + 0.015 , $$V_1(0) = 1.898_{-0.121}^{+0.128}$$ V 1 ( 0 ) = 1 . 898 - 0.121 + 0.128 , $$V_2(0) = 0.228_{-0.021}^{ + 0.020}$$ V 2 ( 0 ) = 0 . 228 - 0.021 + 0.020 , and $$V_0(0) = 0.217_{ - 0.025}^{ + 0.023}$$ V 0 ( 0 ) = 0 . 217 - 0.025 + 0.023 . By applying the extrapolated TFFs to the semi-leptonic decay $$D^{0(+)} \rightarrow a_1^{-(0)}(1260)\ell ^+\nu _\ell $$ D 0 ( + ) → a 1 - ( 0 ) ( 1260 ) ℓ + ν ℓ , we obtain $${\mathcal {B}}(D^0\rightarrow a_1^-(1260) e^+\nu _e) = (5.261_{-0.639}^{+0.745}) \times 10^{-5}$$ B ( D 0 → a 1 - ( 1260 ) e + ν e ) = ( 5 . 261 - 0.639 + 0.745 ) × 10 - 5 , $${\mathcal {B}}(D^+\rightarrow a_1^0(1260) e^+\nu _e) = (6.673_{-0.811}^{+0.947}) \times 10^{-5}$$ B ( D + → a 1 0 ( 1260 ) e + ν e ) = ( 6 . 673 - 0.811 + 0.947 ) × 10 - 5 , $${\mathcal {B}}(D^0\rightarrow a_1^-(1260) \mu ^+ \nu _\mu )=(4.732_{-0.590}^{+0.685}) \times 10^{-5}$$ B ( D 0 → a 1 - ( 1260 ) μ + ν μ ) = ( 4 . 732 - 0.590 + 0.685 ) × 10 - 5 , $${\mathcal {B}}(D^+ \rightarrow a_1^0(1260) \mu ^+ \nu _\mu )=(6.002_{-0.748}^{+0.796}) \times 10^{-5}$$ B ( D + → a 1 0 ( 1260 ) μ + ν μ ) = ( 6 . 002 - 0.748 + 0.796 ) × 10 - 5 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.