Soil fauna play a vital role in contributing to the home-field advantage (HFA: litter decomposes faster in its natural habitat than elsewhere) during litter decomposition. Whether the presence of soil fauna affects the HFA of the decomposition of total phenols and condensed tannins, which are important components of litter, has rarely been investigated. In this study, litterbags with different mesh sizes were transplanted reciprocally, 0.04 mm (basically excluding soil fauna) and 3 mm (basically allowing all soil fauna to enter), in Lindera megaphylla and Cryptomeria fortunei forests. The results illustrated that the loss rates of total phenols and condensed tannins reached 64.07% to 84.49% and 69.67% to 88.37%, respectively, after 2 months of decomposition. Moreover, soil fauna positively contributed to the decomposition of condensed tannins in high-quality litter. After 2 months of decomposition, a significantly positive HFA (HFA index: 10.32) was found for total phenol decomposition in the coarse mesh, while a significantly negative HFA (HFA index: −1.81) was observed for condensed tannin decomposition in the fine mesh after 10 months of decomposition. Polyphenol oxidase (PPO) and peroxidase (POD) activities were significantly influenced by litter types. The loss rates of total phenols and condensed tannins were significantly negatively correlated with the initial N content, P content, N/P ratio, and POD activity and were positively related to the initial C content, total phenol content, condensed tannin content, C/P ratio, and C/N ratio. Only the loss of condensed tannins was negatively correlated with PPO activity (after 2 months’ decomposition). However, none of these correlations were observed after 10 months of decomposition. Our study illustrated that (1) soil fauna contributed to the decomposition of total phenols and condensed tannins but were influenced by litter type for condensed tannins. (2) The soil fauna had inconsistent effects on the HFA of total phenols and condensed tannins, possibly due to the combined regulatory effects of environmental context, litter quality, and rapid decomposition rates. In sum, the results indicated that soil fauna played an important role in the decomposition of condensed tannins and total phenols in litter, and additional studies on the effects of soil faunal abundance and class on HFA of condensed tannins and total phenols are needed.