Due to the uncertainty in output power of wind farm (WF) systems, a certain reserve capacity is often required in the power system to ensure service reliability and thereby increasing the operation and investment costs for the entire system. In order to reduce this uncertainty and reserve capacity, this study proposes a multi-objective stochastic optimization model to determine the set-points of the WF system. The first objective is to maximize the set-point of the WF system, while the second objective is to maximize the probability of fulfilling that set-point in the real-time operation. An increase in the probability of satisfying the set-point can reduce the uncertainty in the output power of the WF system. However, if the required probability increases, the set-point of the WF system decreases, which reduces the profitability of the WF system. Using the proposed method helps the WF operator in determining the optimal set-point for the WF system by making a trade-off between maximizing the set-point of WF and increasing the probability of fulfilling this set-point in real-time operation. This ensures that the WF system can offer an optimal set-point with a high probability of satisfying this set-point to the power system and thereby avoids a high penalty for mismatch power. In order to show the effectiveness of the proposed method, several case studies are carried out, and the effects of various parameters on the optimal set-point for the WF system are also analyzed. According to the parameters from the transmission system operator (TSO) and wind speed profile, the WF operator can easily determine the optimal set-point using the proposed strategy. A comparison of the profits that the WF system achieved with and without the proposed method is analyzed in detail, and the set-point of the WF system in different seasons is also presented.